
AN INTEGRAL EQUATION E~COUNTE~D IN THE 
PRORLEM OF A RIGID FOUffDATION BEARING 

ON NONHOMOGENEOUS SOIL 

(OB ODNOM ~NTEGBAL*~OM ~RAVNRNIX, VSTRE~BAIUSSCBERSIA 
V ZADACBE 0 DAVLENII ZRESTKOGO ~~NDAHENTA 

NA NEODNORODNYI GRUNT) 

PMM Vo1.25, No.1, 1961, pp. 264-168 

N.A. ROSTGVTSEV 
(Komsomolsk-on-Amur) 

(Received June 22, 1960) 

It was shown in an article by Klein [ 1 1 that if the deformation modulus 
of the soil varies with depth z according to the law E = EAza (where E, 
is a constant), then provided that the index RI and the coefficient of 
lateral expansion v satisfy the relation v(2 + a) = 1, there exists an 
elementary solution which satisfies the St. Venant compatibility condi- 
tions and expresses the effect of a concentrated force applied in a 
direction normal to the surface of the soil. From this we can find a 
power kernel for the integral representing the settlement w in terms of 
the pressure p = ftx, y) f (x’, y’) dx’dy’ 

\(x- x’)2 + (Y-~‘)2]‘/dl+~)-’ (0.1) 

Here D is the area of contact 

a==a/m,, CL -= + (3 + Iy1) / (1 + nt) (2 + nt) 

For non-negative values of a,integral (0.1) converges if, and only if, 
0 G BI < 1. In cases when the above relation between the constants R and 
v is not satisfied Formula (0.1) ceases to be exact, but can still be 
accepted as a basis for practical computations. In such cases the con- 
stant a is found from the values of the independent variables a, v with 
the aid of a set of curves [l 1. Although the results are not exact, 
Equation (0.1) and the unknown function p = f(x, y) are of considerable 
interest in themselves, and in one or other equivalent form have already 
been the subject of investigation t 2,3 1 (I In particular, a solution is 
given in E3 1 in closed form for a circular* area. We shall give below a 
solution for an elliptical area for the case when F(r, y) is a polynomial, 
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together with a solution for a circular area derived by a different 
method, by reducing (0.1) to an equation of the Abel type. As an example 
we shall consider a bearing surface in the form of a paraboloid of 
revolution, 

1. In the case of an elliptical area the solution is based on the 
following theorem. 

Theorem. Let the pressure under the bearing surface, which is ellip- 
tical in plan. be expressed by the product of the ~oIYnomia1 If{%, y) and 
the function 

Il.1) 

The settlement w is then given by a polynomial of 

&x, Y). 

This theorem is a generalization of the analogous 
IQ 1 which refers to the classical case of RI = 0. It 
the method of indeterminate coefficients. 

the same order as 

theorem of Shtaerman 
enables UE to apply 

Proof. We introduce a set of polar coordinates with pole at a point 
(2, y) inside the ellipse, i.e. we set 

We then have 

5’ = x _1- p co9 cp, y’=y+psinrp (I.21 

(1.3) 

where x’y’ under the integral sign must be replaced by Expressions (1.2), 
and the function pI(c$) in the upper limit is the positive root of the 
equation 

x.2 +$4 -_ @ -I- P cm rpT 
3 u2 

+ 61 + P sin rpf2 _ i = 0 
b” 

which, for convenience, we shall write in the form 

where 

(1.4) 
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The roots of this equation are 

Pl = Pl (cp) = & (-B+fBZ+‘4C)=a (a > 0) 

P1=pa(~)=~(-B--~Z+nc)=-- (9 > 0) (1 71 

and, in addit ion 

i - $ - y; = c (Pl - p) (p - pz) 

Further, we note that if we add n to the argument of 4 we do not alter 

the value of the function C(4), but the function B(4) changes sign. Con- 

sequent ly 

Pl (cp + 4 = - pz = P, pz (cp + x) = - p1 = - a 

If we now divide the interval of integration with respect to 4 into 

two parts, from 0 to R and from R to 2n, and replace $ by n + 3 in the 

second part, we obtain on the basis of the foregoing remarks 

x ca 

F (z, y) = s IS 

~ + p cp, y + p sin (p) 

[ (cf - p) (p + p)]‘/‘(‘-“‘) 

P-mdp + 

0 0 

ti 

+ 
* rr(r-- 

i 

P cos cp. Y - P sin cp) 

[(a + P) (P - P)“‘(‘-m) 

p-mdp 1 

1 
(1.8) 

0 

In the classical case of m = 0 it is not 

tegrals in braces to form an integral of an 

In cases when m f 0, however, we proceed as 

gral 

J (a, P) = n (5 + 5 cos ‘p, Y + I; sin 9) [(5 - 

difficult to combine the in- 

analytic function (see [4 I). 
follows. Consider the inte- 

o) (5 + p)]‘/““-l’ dj 

5” 
(1.9) 

taken in the positive direction over the boundary containing the points 

a, -6, 0 in the l-plane cut along the real axis from a to -p. 

If we contract this boundary towards the cut until it coincides with 

the edges of the discontinuity, to which should be added circles of arbi- 

trarily small radius with centers in the points a, -p, 0, and if we then 

evaluate by the usual method the resulting integrals, we find that J(a,i3) 

differs from the sum of the integrals in braces in (1.8) by a factor 

2i cos l/2 a71. Consequently 
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IE we now expand I&X + 6 cos 1;6, y + < sin ~$1 in Powers of 6 we find 
that 

Here N is the order of the polynomial &!x, y) in the unknowns x, y. 
We shall set 

Then 

F tz, Y) = n x N %(a, PI D ( cos 4, +$ + sin 4p &)“II (z, y) dq 
cos +c ?4! C*/*(l-mI 

(iA3) 

o n=o 

Integral (1.12) is a finite expression. Indeed, \<I > max (a, p>, and 
in order to evaluate this integxal we expand the integrand into a series 
in powers of 4 - ‘. But 

All terms in which r + s f n vanish after integration. Therefore 

@, (a, P) = i r,k!:,f (+)r (y),, arP”-’ 
r=o + 

(1.15) 

If we now combine terms equidistant from the beginning and end of this 
series and take into account Expressions (1.7) for a and /3, we find that, 
for n even or odd, in both cases terms containing square roots disappear. 
@mCa, p) is therefore a polynomial in (x, y). Furthermore, we have found 
that the order of this polynomial in x, y is n. Integral (1.9) is there- 
fore a polynomial of order N, as it was required to prove. We could have 
given at this stage the final expressions for @*(a, p) in terms of Z, y, 

but they are extremely cumbersome. For small values of n the expressions 
are 

% (a, P) = 1, 
B 674 

@I (a, P) = (m - i) C (cp) 
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2. Let us consider a flat bearing surface [die 1 inclined to the sur- 
face of the soil; here 10 = we + TOX. In accordance with the previous ex- 
ample we shall take p = f(x, y) in the form 

P=tP*+w4 1--$-s ( 2 ‘/*m-If 1 (2.11 

Applying the formulas of the previous example, we have 

(2.2) 

n 

’ co.52 cp [SC sin2 cp zh(m-l) 
px --- 

aa b2 
0 

From this p,, and p can easily be found in terms of m. and ID. For a f b 
an actual calculation would 
total elliptical integrals, 
by l/2(1 - n). 

require tables of functions analogous to the 
in the sense that the square root is replaced 

3. We shall give now the solution for a circular area. We shall use 
polar coordinates with pole at the point (0, 0) and expand F(z, y) and 
f(x, y) in Fourier series in the angular coordinate 4. It can easily be 
shown that the relation between the Fourier coefficients F,(r) and f,(r) 
in both expansions is 

cosna do 
(3.1) 

Here we can write either F,,(r) or f,(r) for co6 n+ and sin n& since 
in the present context this does not lead to any ambiguity. 

The kernel of this equation 

can easily be expressed in terms of an integral which gives a canonical 

(3.2) 

representation of some hypergeometric function F(a, b, c; z). For, 
suppose r > 8, and let us put h = s/r and 4 = ei”. Then 

-i 
XnP, 4 = p+l 

f 

p@w tn- lq 

(1 - ~~)*m+lf (5 _ /$/*(m+l) 
(3.3) 

where the integral is taken over the circle ([( = 1. If we now pass by 
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the usual method from this integral to an integral taken along the Part 
of the real axis 0 < x G h which forms the discontinuity, we find that 

h 
2 cos ‘1% mn 

s 

2’/*(~+‘)+~-ldz 
~ 

xn (r9 4 = 
r ??I+1 (1 _ /yJ.)‘/2(m+l) (h _ #*(m+l) 

It is convenient here to make the substitution x = th/s2)t2. This 
gives 

s 

xn (r, s) = 
4 cos l/z mat 

s 

p+wit 

r”s” o [pa _ f.4) ($ _ p)]%w-1) for s d p 

i%lso, by s~metry 

r 

Xn (r, s) = 
4 cos 1/Z mX 

c 

tn+&?ndt 

rnsn ;, [(r2 _ t2) (82 _ tz)]%(~+l) for F<s 

substituting these expressions in Equation (1.2) we obtain 

F, (r) = 
4 cos l/smn tmSandt 

?n { j sl-“f, (s) ds \ 
0 

o [ (r2 - t2) (s2 - tz)]%w+o .+ 

+i 
sl+& (s) ds i 

tm+2ndt 
? 

P 
o [pz - t2) (g _ t2)pm-W , 

(3.4) 

(3.5) 

(3 5a) 

(3.6) 

Since the singularity of the integrands (in the inner integrals) is 
non-essential, we can reverse the order of integration (in the first 
term by using Dirichlet’s formula). Then, after adding the results, we 
obtain 

I 

tm+2ndt 
a 

F, (r) = 
4 cos ‘jzrnn 

r” s o (~2 - Pf’a@+Q s 

sl-+& (s) ds 

t (s2 _ t2pztm+l) 
(3 7 

It will now be seen that in order to find j,,(s) we simply have to 
solve two equations of the Abel type. As a final result we have 

a 
d 

p-1 _ s ul-m-2n & d u -. 
dr p ($ _ ,2)‘/2Mo du s sn+F, (Y) ds 

(uz _ ,z)W1-W (3 3) 

This formula coincides with the solution given in [3 ] . It can be 
simplified by integrating by parts and taking the differentiation under 
the integral sign (assuming that the derivative Fn’(r) is continuous 
over the interval 0 4 r < a). Then 
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I ,, (r) = 
cos ~/2n1n 

n2 m 
i 

II, ((I) 
(a2 _ r2)"i2(1--170 - I a l’,‘(u) du 1 

r (u2 _ r2)'/2(1--c f 
(:; !J) 

where 

We note also that for the settlement outside the bearing surface 
Formula (3.7) gives 

a 

F, (r) = 
4 cos 1/zrn5t 

s 

tm+2ndt 
a 

rn c 

sl-“f, (s) ds 

o (f2 _ tz)%(* to i ($ _ ts)‘/2wl) (3.12) 

BY putting w in the form of a polynomial we see that (3.9) can be 
evaluated without difficulty. 

4. We shall consider now a bearing surface in the form of a paraboloid 
of revolution 

12 = w. - Ar” (k > 1) (4.1) 

Here the index k is not necessarily an integer. The case of k = 1 cor- 
responds to a conical [die 1 bearing surface. From Formula (3.11) we ob- 
tain 

Thus, a regular solution is possible on condition that 

u: 

0 

= r F/2 +'/zm) I-' (1 + li2k) Aak 

r ('/z/n + ll2k + l/2) 

This solution is of the form 
1 

tk--l dt r 
tt2_ p2p(l-~) ' F -_ u 

where the constant 

COS'/zmn 

K= *“fj 

r (l/2 -k '/znL) r (1 -k lid4 A,Tn+k-l 

r (ll2m + 'l2k + l/d 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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We then have for the load P 

2nXa= 
‘= (l+m)(k+I+m) 

P 1 

s 

tk-ldt 
P W = (1 + no) (k f I+ m) ~na2 (tz- pZ) ‘hw--ml 

P 

(4.6) 

(4.7) 

In the case when K is even this result can be expressed very simply. 
For example, when k = 2 (the anslogue of the Hertz case) we find that 

p (r) = p * (a2 - raflz(l+m) 

The distribution of pressure conforms very closely to this result in 
the classical case. With 8 conical bearing surface, however, the Pres- 
sure p(O) at the center remains finite. In this case the curve of the 
pressure has a vertical tangent at the center. 

From (3.12) we can show that the settlement outside the bearing sur- 
face is 

a 

wo (r) = 
2 cos l/am% I? (‘/a + ‘lzm) r (it_ lizk) A tm (a” - tk) 

x r (‘lzm + ‘I& -I- “/a) (+ _ ta$/2(m-tl) dt (4.9) 
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